Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Nature ; 621(7979): 592-601, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648855

RESUMO

Currently circulating SARS-CoV-2 variants have acquired convergent mutations at hot spots in the receptor-binding domain1 (RBD) of the spike protein. The effects of these mutations on viral infection and transmission and the efficacy of vaccines and therapies remains poorly understood. Here we demonstrate that recently emerged BQ.1.1 and XBB.1.5 variants bind host ACE2 with high affinity and promote membrane fusion more efficiently than earlier Omicron variants. Structures of the BQ.1.1, XBB.1 and BN.1 RBDs bound to the fragment antigen-binding region of the S309 antibody (the parent antibody for sotrovimab) and human ACE2 explain the preservation of antibody binding through conformational selection, altered ACE2 recognition and immune evasion. We show that sotrovimab binds avidly to all Omicron variants, promotes Fc-dependent effector functions and protects mice challenged with BQ.1.1 and hamsters challenged with XBB.1.5. Vaccine-elicited human plasma antibodies cross-react with and trigger effector functions against current Omicron variants, despite a reduced neutralizing activity, suggesting a mechanism of protection against disease, exemplified by S309. Cross-reactive RBD-directed human memory B cells remained dominant even after two exposures to Omicron spikes, underscoring the role of persistent immune imprinting.


Assuntos
Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Reações Cruzadas , Evasão da Resposta Imune , Fusão de Membrana , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Mutação , Células B de Memória/imunologia , Vacinas contra COVID-19/imunologia
2.
Br J Nutr ; 130(10): 1712-1719, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36946006

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells after binding to the membrane-bound receptor angiotensin-converting enzyme 2 (ACE2), but this may be prevented through interception by soluble ACE2 (sACE2) or by inhibition of the ACE2 receptor, thus obstructing cell entry and replication. The main objective of this study was to investigate if fish intake affected the concentration of sACE2 in rats. The secondary aim was to evaluate the in vitro ACE2-inhibiting activity of fish proteins. Rats were fed cod muscle as 25 % of dietary protein, and blood was collected after 4 weeks of intervention. Muscle, backbone, skin, head, stomach, stomach content, intestine and swim bladder from haddock, saithe, cod and redfish were hydrolysed with trypsin before ACE2-inhibiting activity was measured in vitro. In vivo data were compared using unpaired Student's t test, and in vitro data were compared using one-way ANOVA followed by the Tukey HSD post hoc test. The mean sACE2 concentration was 47 % higher in rats fed cod when compared with control rats (P 0·034), whereas serum concentrations of angiotensin II and TNF-α were similar between the two experimental groups. Muscle, backbone, skin and head from all four fish species inhibited ACE2 activity in vitro, whereas the remaining fractions had no effect. To conclude, our novel data demonstrate that fish intake increased the sACE2 concentration in rats and that the hydrolysed fish proteins inhibited ACE2 activity in vitro.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Proteínas de Peixes , SARS-CoV-2 , Animais , Ratos , Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/dietoterapia , COVID-19/imunologia , COVID-19/virologia , Peptidil Dipeptidase A/metabolismo
3.
J Virol ; 96(17): e0114022, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000843

RESUMO

The SARS-CoV-2 Omicron variants were first detected in November 2021, and several Omicron lineages (BA.1, BA.2, BA.3, BA.4, and BA.5) have since rapidly emerged. Studies characterizing the mechanisms of Omicron variant infection and sensitivity to neutralizing antibodies induced upon vaccination are ongoing by several groups. In the present study, we used pseudoviruses to show that the transmembrane serine protease 2 (TMPRSS2) enhances infection of BA.1, BA.1.1, BA.2, and BA.3 Omicron variants to a lesser extent than ancestral D614G. We further show that Omicron variants have higher sensitivity to inhibition by soluble angiotensin-converting enzyme 2 (ACE2) and the endosomal inhibitor chloroquine compared to D614G. The Omicron variants also more efficiently used ACE2 receptors from 9 out of 10 animal species tested, and unlike the D614G variant, used mouse ACE2 due to the Q493R and Q498R spike substitutions. Finally, neutralization of the Omicron variants by antibodies induced by three doses of Pfizer/BNT162b2 mRNA vaccine was 7- to 8-fold less potent than the D614G. These results provide insights into the transmissibility and immune evasion capacity of the emerging Omicron variants to curb their ongoing spread. IMPORTANCE The ongoing emergence of SARS-CoV-2 Omicron variants with an extensive number of spike mutations poses a significant public health and zoonotic concern due to enhanced transmission fitness and escape from neutralizing antibodies. We studied three Omicron lineage variants (BA.1, BA.2, and BA.3) and found that transmembrane serine protease 2 has less influence on Omicron entry into cells than on D614G, and Omicron exhibits greater sensitivity to endosomal entry inhibition compared to D614G. In addition, Omicron displays more efficient usage of diverse animal species ACE2 receptors than D614G. Furthermore, due to Q493R/Q498R substitutions in spike, Omicron, but not D614G, can use the mouse ACE2 receptor. Finally, three doses of Pfizer/BNT162b2 mRNA vaccination elicit high neutralization titers against Omicron variants, although the neutralization titers are still 7- to 8-fold lower those that against D614G. These results may give insights into the transmissibility and immune evasion capacity of the emerging Omicron variants to curb their ongoing spread.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , COVID-19/imunologia , COVID-19/virologia , Humanos , Evasão da Resposta Imune/imunologia , Camundongos , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Theranostics ; 12(12): 5522-5536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910791

RESUMO

Objective: Nobody knows when the COVID-19 pandemic will end or when and where the next coronavirus will outbreak. Therefore, it is still necessary to develop SARS-CoV-2 inhibitors for different variants or even the new coronavirus. Since SARS-CoV-2 uses its surface spike-protein to recognize hACE2, mediating its entry into cells, ligands that can specifically recognize the spike-protein have the potential to prevent infection. Methods: We have recently discovered DNA aptamers against the S2-domain of the WT spike-protein by exploiting the selection process called SELEX. After optimization, among all candidates, the aptamer S2A2C1 has the shortest sequence and the best binding affinity toward the S2-protein. More importantly, the S2A2C1 aptamer does not bind to the RBD of the spike-protein, but it efficiently blocks the spike-protein/hACE2 interaction, suggesting an RBD-independent inhibition approach. To further improve its performance, we conjugated the S2A2C1 aptamer with a reported anti-RBD aptamer, S1B6C3, using various linkers and constructed hetero-bivalent fusion aptamers. Binding affinities of mono and fusion aptamers against the spike-proteins were measured. The inhibition efficacies of mono and fusion aptamers to prevent the hACE2/spike-protein interaction were determined using ELISA. Results: Anti-spike-protein aptamers, including S2A2C1 and S1B6C3-A5-S2A2C1, maintained high binding affinity toward the WT, Delta, and Omicron spike-proteins and high inhibition efficacies to prevent them from binding to hACE2, rendering them well-suited as diagnostic and therapeutic molecular tools to target SARS-CoV-2 and its variants. Conclusions: Overall, we discovered the anti-S2 aptamer, S2A2C1, which inhibits the hACE2/spike-protein interaction via an RBD-independent approach. The anti-S2 and anti-RBD aptamers were conjugated to obtain the fusion aptamer, S1B6C3-A5-S2A2C1, which recognizes the spike-protein by an RBD-dependent approach. Our strategies, which discovered aptamer inhibitors targeting the highly conserved S2-protein, as well as the design of fusion aptamers, can be used to target new coronaviruses as they emerge.


Assuntos
Enzima de Conversão de Angiotensina 2 , Aptâmeros de Nucleotídeos , COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/imunologia , Aptâmeros de Nucleotídeos/imunologia , Aptâmeros de Nucleotídeos/farmacologia , COVID-19/imunologia , COVID-19/virologia , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
5.
Nucleic Acids Res ; 50(5): 2509-2521, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35234938

RESUMO

Upon SARS-CoV-2 infection, viral intermediates specifically activate the IFN response through MDA5-mediated sensing and accordingly induce ADAR1 p150 expression, which might lead to viral A-to-I RNA editing. Here, we developed an RNA virus-specific editing identification pipeline, surveyed 7622 RNA-seq data from diverse types of samples infected with SARS-CoV-2, and constructed an atlas of A-to-I RNA editing sites in SARS-CoV-2. We found that A-to-I editing was dynamically regulated, varied between tissue and cell types, and was correlated with the intensity of innate immune response. On average, 91 editing events were deposited at viral dsRNA intermediates per sample. Moreover, editing hotspots were observed, including recoding sites in the spike gene that affect viral infectivity and antigenicity. Finally, we provided evidence that RNA editing accelerated SARS-CoV-2 evolution in humans during the epidemic. Our study highlights the ability of SARS-CoV-2 to hijack components of the host antiviral machinery to edit its genome and fuel its evolution, and also provides a framework and resource for studying viral RNA editing.


Assuntos
COVID-19/imunologia , Imunidade Inata/imunologia , Edição de RNA/imunologia , SARS-CoV-2/imunologia , Adenosina Desaminase/genética , Adenosina Desaminase/imunologia , Adenosina Desaminase/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Sequência de Bases , Sítios de Ligação/genética , COVID-19/genética , COVID-19/virologia , Evolução Molecular , Expressão Gênica/imunologia , Humanos , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Mutação , Ligação Proteica , Edição de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Homologia de Sequência do Ácido Nucleico , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
PLoS One ; 17(2): e0263684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35134091

RESUMO

Since the SARS-CoV-2 infection was identified in December 2019, SARS-CoV-2 infection has rapidly spread worldwide and has become a significant pandemic disease. In addition, human death and serious health problem caused by SARS-CoV-2 infection, the socio-economic impact has been very serious. Here, we describe the development of the viral vector vaccine, which is the receptor-binding domain (RBD) of SARS-CoV-2 expressed on the surface of Newcastle disease virus (LVP-K1-RBD19). The RBD protein concentrations on the viral surface were measured by the sandwich ELISA method. 106.7 TCID50/ml of LVP-K1-RBD19 has a 0.17 µg of RBD protein. Optical density (OD) values of mouse sera inoculated with 10 µg of RBD protein expressed on the surface of LVP-K1-RBD19 generated 1.78-fold higher RBD-specific antibody titers than mice inoculated with 10 µg RBD protein with alum at 28 dpi. Moreover, mice inoculated with 10 µg of RBD protein expressed on the surface of LVP-K1-RBD19 virus showed more than 80% neutralization at 1:256 against the SARS-CoV-2 pseudovirus. These results demonstrated that inactivated LVP-K1-RBD19 virus produces neutralizing antibodies against SARS-CoV-2 in a short period and could be elect protective immunity in humans and LVP-K1-RBD19 will be a good candidate for the COVID-19 vaccine.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Vírus da Doença de Newcastle/imunologia , Vacinas Virais/imunologia , Animais , COVID-19/imunologia , COVID-19/virologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Doença de Newcastle/genética , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/imunologia
7.
Acta Neuropathol Commun ; 10(1): 14, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105380

RESUMO

Coronavirus disease 2019 (COVID-19) is associated with an increased risk of thrombotic events. Ischemic stroke in COVID-19 patients entails high severity and mortality rates. Here we aimed to analyze cerebral thrombi of COVID-19 patients with large vessel occlusion (LVO) acute ischemic stroke to expose molecular evidence for SARS-CoV-2 in the thrombus and to unravel any peculiar immune-thrombotic features. We conducted a systematic pathological analysis of cerebral thrombi retrieved by endovascular thrombectomy in patients with LVO stroke infected with COVID-19 (n = 7 patients) and non-covid LVO controls (n = 23). In thrombi of COVID-19 patients, the SARS-CoV-2 docking receptor ACE2 was mainly expressed in monocytes/macrophages and showed higher expression levels compared to controls. Using polymerase chain reaction and sequencing, we detected SARS-CoV-2 Clade20A, in the thrombus of one COVID-19 patient. Comparing thrombus composition of COVID-19 and control patients, we noted no overt differences in terms of red blood cells, fibrin, neutrophil extracellular traps (NETs), von Willebrand Factor (vWF), platelets and complement complex C5b-9. However, thrombi of COVID-19 patients showed increased neutrophil density (MPO+ cells) and a three-fold higher Neutrophil-to-Lymphocyte Ratio (tNLR). In the ROC analysis both neutrophils and tNLR had a good discriminative ability to differentiate thrombi of COVID-19 patients from controls. In summary, cerebral thrombi of COVID-19 patients can harbor SARS-CoV2 and are characterized by an increased neutrophil number and tNLR and higher ACE2 expression. These findings suggest neutrophils as the possible culprit in COVID-19-related thrombosis.


Assuntos
Isquemia Encefálica/imunologia , COVID-19/imunologia , Imunidade Celular/fisiologia , Trombose Intracraniana/imunologia , Neutrófilos/imunologia , Acidente Vascular Cerebral/imunologia , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/sangue , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Isquemia Encefálica/sangue , Isquemia Encefálica/genética , COVID-19/sangue , COVID-19/genética , Feminino , Humanos , Trombose Intracraniana/sangue , Trombose Intracraniana/genética , Masculino , Trombólise Mecânica/métodos , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Estudos Prospectivos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/genética
9.
Viruses ; 14(2)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215785

RESUMO

SARS-CoV-2, a member of the coronavirus family, is the causative agent of the COVID-19 pandemic. Currently, there is still an urgent need in developing an efficient therapeutic intervention. In this study, we aimed at evaluating the therapeutic effect of a single intranasal treatment of the TLR3/MDA5 synthetic agonist Poly(I:C) against a lethal dose of SARS-CoV-2 in K18-hACE2 transgenic mice. We demonstrate here that early Poly(I:C) treatment acts synergistically with SARS-CoV-2 to induce an intense, immediate and transient upregulation of innate immunity-related genes in lungs. This effect is accompanied by viral load reduction, lung and brain cytokine storms prevention and increased levels of macrophages and NK cells, resulting in 83% mice survival, concomitantly with long-term immunization. Thus, priming the lung innate immunity by Poly(I:C) or alike may provide an immediate, efficient and safe protective measure against SARS-CoV-2 infection.


Assuntos
COVID-19/imunologia , COVID-19/prevenção & controle , Imunidade Inata , Poli I-C/imunologia , Poli I-C/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Receptor 3 Toll-Like/agonistas , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/prevenção & controle , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Transgênicos , SARS-CoV-2/imunologia , Receptor 3 Toll-Like/imunologia , Carga Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
10.
Viruses ; 14(2)2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-35215922

RESUMO

SARS-CoV-2-specific CD8+ T cell immunity is expected to counteract viral variants in both efficient and durable ways. We recently described a way to induce a potent SARS-CoV-2 CD8+ T immune response through the generation of engineered extracellular vesicles (EVs) emerging from muscle cells. This method relies on intramuscular injection of DNA vectors expressing different SARS-CoV-2 antigens fused at their N-terminus with the Nefmut protein, i.e., a very efficient EV-anchoring protein. However, quality, tissue distribution, and efficacy of these SARS-CoV-2-specific CD8+ T cells remained uninvestigated. To fill the gaps, antigen-specific CD8+ T lymphocytes induced by the immunization through the Nefmut-based method were characterized in terms of their polyfunctionality and localization at lung airways, i.e., the primary targets of SARS-CoV-2 infection. We found that injection of vectors expressing Nefmut/S1 and Nefmut/N generated polyfunctional CD8+ T lymphocytes in both spleens and bronchoalveolar lavage fluids (BALFs). When immunized mice were infected with 4.4 lethal doses of 50% of SARS-CoV-2, all S1-immunized mice succumbed, whereas those developing the highest percentages of N-specific CD8+ T lymphocytes resisted the lethal challenge. We also provide evidence that the N-specific immunization coupled with the development of antigen-specific CD8+ T-resident memory cells in lungs, supporting the idea that the Nefmut-based immunization can confer a long-lasting, lung-specific immune memory. In view of the limitations of current anti-SARS-CoV-2 vaccines in terms of antibody waning and efficiency against variants, our CD8+ T cell-based platform could be considered for a new combination prophylactic strategy.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/prevenção & controle , Vesículas Extracelulares/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Antígenos Virais/administração & dosagem , Antígenos Virais/genética , COVID-19/imunologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Humanos , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vacinação
11.
Viruses ; 14(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215996

RESUMO

Mathematical modelling of infection processes in cells is of fundamental interest. It helps to understand the SARS-CoV-2 dynamics in detail and can be useful to define the vulnerability steps targeted by antiviral treatments. We previously developed a deterministic mathematical model of the SARS-CoV-2 life cycle in a single cell. Despite answering many questions, it certainly cannot accurately account for the stochastic nature of an infection process caused by natural fluctuation in reaction kinetics and the small abundance of participating components in a single cell. In the present work, this deterministic model is transformed into a stochastic one based on a Markov Chain Monte Carlo (MCMC) method. This model is employed to compute statistical characteristics of the SARS-CoV-2 life cycle including the probability for a non-degenerate infection process. Varying parameters of the model enables us to unveil the inhibitory effects of IFN and the effects of the ACE2 binding affinity. The simulation results show that the type I IFN response has a very strong effect on inhibition of the total viral progeny whereas the effect of a 10-fold variation of the binding rate to ACE2 turns out to be negligible for the probability of infection and viral production.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Interferon Tipo I/imunologia , Modelos Teóricos , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/imunologia , Simulação por Computador , Humanos , Cinética , Estágios do Ciclo de Vida , Cadeias de Markov , Ligação Proteica , SARS-CoV-2/crescimento & desenvolvimento , Processos Estocásticos
12.
Sci Rep ; 12(1): 1727, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110645

RESUMO

As the first dose of Gam-COVID-Vac, is currently used as a single dose vaccine in some countries, we investigated the immunogenicity of this at 4 weeks (327 naïve individuals). 88.7% seroconverted, with significantly lower seroconversion rates in those over 60 years (p = 0.004) and significantly lower than previously seen with AZD1222 (p = 0.018). 82.6% developed ACE2 receptor blocking antibodies, although levels were significantly lower than following natural infection (p = 0.0009) and a single dose of AZD1222 (p < 0.0001). Similar titres of antibodies were observed to the receptor binding domain of WT, B.1.1.7 and B.1.617.2 compared to AZD1222, while the levels for B.1.351 were significantly higher (p = 0.006) for Gam-COVID-Vac. 30% developed ex vivo IFNγ ELISpot responses (significantly lower than AZD1222), and high frequency of CD107a expressing T cells along with memory B cell responses. Although single dose of Gam-COVID-Vac was highly immunogenic, administration of a second dose is likely to be beneficial.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , ChAdOx1 nCoV-19/administração & dosagem , Imunização , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Vacinas Sintéticas/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/imunologia , Biomarcadores/sangue , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , ChAdOx1 nCoV-19/imunologia , Feminino , Humanos , Interferon gama/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/virologia , Masculino , Pessoa de Meia-Idade , Soroconversão , Fatores de Tempo , Resultado do Tratamento , Vacinas Sintéticas/imunologia , Adulto Jovem
13.
Front Immunol ; 13: 821664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197985

RESUMO

New emerging severe acute respiratory syndrome 2 (SARS-CoV-2) has caused a worldwide pandemic. Several animal models of coronavirus disease 2019 (COVID-19) have been developed and applied to antiviral research. In this study, two lethal mouse-adapted SARS-CoV-2 variants (BMA8 and C57MA14) with different virulence were generated from different hosts, which are characterized by high viral replication titers in the upper and lower respiratory tract, pulmonary pathology, cytokine storm, cellular tropism, lymphopenia, and neutrophilia. Two variants exhibit host genetics-related and age-dependent morbidity and mortality in mice, exquisitely reflecting the clinical manifestation of asymptomatic, moderate, and severe COVID-19 patients. Notably, both variants equally weaken the neutralization capacity of the serum derived from COVID-19 convalescent, but the C57MA14 variant showed a much higher virulence than the BMA8 variant in vitro. Q489H substitution in the receptor-binding domain (RBD) of BMA8 and C57MA14 variants results in the receptors of SARS-CoV-2 switching from human angiotensin-converting enzyme 2 (hACE2) to murine angiotensin-converting enzyme 2 (mACE2). Additionally, A22D and A36V mutation in E protein were first reported in our study, which potentially contributed to the virulence difference between the two variants. Of note, the protective efficacy of the novel bacterium-like particle (BLP) vaccine candidate was validated using the BMA8- or C57MA14-infected aged mouse model. The BMA8 variant- and C57MA14 variant-infected models provide a relatively inexpensive and accessible evaluation platform for assessing the efficacy of vaccines and novel therapeutic approaches. This will promote further research in the transmissibility and pathogenicity mechanisms of SARS-CoV-2.


Assuntos
COVID-19 , Mutação de Sentido Incorreto , SARS-CoV-2 , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , COVID-19/genética , COVID-19/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
15.
J Extracell Vesicles ; 11(1): e12179, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982509

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry is mediated by the interaction of the viral spike (S) protein with angiotensin-converting enzyme 2 (ACE2) on the host cell surface. Although a clinical trial testing soluble ACE2 (sACE2) for COVID-19 is currently ongoing, our understanding of the delivery of sACE2 via small extracellular vesicles (sEVs) is still rudimentary. With excellent biocompatibility allowing for the effective delivery of molecular cargos, sEVs are broadly studied as nanoscale protein carriers. In order to exploit the potential of sEVs, we design truncated CD9 scaffolds to display sACE2 on the sEV surface as a decoy receptor for the S protein of SARS-CoV-2. Moreover, to enhance the sACE2-S binding interaction, we employ sACE2 variants. sACE2-loaded sEVs exhibit typical sEVs characteristics and bind to the S protein. Furthermore, engineered sEVs inhibit the entry of wild-type (WT), the globally dominant D614G variant, Beta (K417N-E484K-N501Y) variant, and Delta (L452R-T478K-D614G) variant SARS-CoV-2 pseudovirus, and protect against authentic SARS-CoV-2 and Delta variant infection. Of note, sACE2 variants harbouring sEVs show superior antiviral efficacy than WT sACE2 loaded sEVs. Therapeutic efficacy of the engineered sEVs against SARS-CoV-2 challenge was confirmed using K18-hACE2 mice. The current findings provide opportunities for the development of new sEVs-based antiviral therapeutics.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Vesículas Extracelulares/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Feminino , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
16.
EBioMedicine ; 75: 103803, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34979342

RESUMO

BACKGROUND: The Coronavirus Disease 2019 (COVID-19) pandemic has been a great threat to global public health since 2020. Although the advance on vaccine development has been largely achieved, a strategy to alleviate immune overactivation in severe COVID-19 patients is still needed. The NLRP3 inflammasome is activated upon SARS-CoV-2 infection and associated with COVID-19 severity. However, the processes by which the NLRP3 inflammasome is involved in COVID-19 disease remain unclear. METHODS: We infected THP-1 derived macrophages, NLRP3 knockout mice, and human ACE2 transgenic mice with live SARS-CoV-2 in Biosafety Level 3 (BSL-3) laboratory. We performed quantitative real-time PCR for targeted viral or host genes from SARS-CoV-2 infected mouse tissues, conducted histological or immunofluorescence analysis in SARS-CoV-2 infected mouse tissues. We also injected intranasally AAV-hACE2 or intraperitoneally NLRP3 inflammasome inhibitor MCC950 before SARS-CoV-2 infection in mice as indicated. FINDINGS: We have provided multiple lines of evidence that the NLRP3 inflammasome plays an important role in the host immune response to SARS-CoV-2 invasion of the lungs. Inhibition of the NLRP3 inflammasome attenuated the release of COVID-19 related pro-inflammatory cytokines in cell cultures and mice. The severe pathology induced by SARS-CoV-2 in lung tissues was reduced in Nlrp3-/- mice compared to wild-type C57BL/6 mice. Finally, specific inhibition of the NLRP3 inflammasome by MCC950 alleviated excessive lung inflammation and thus COVID-19 like pathology in human ACE2 transgenic mice. INTERPRETATION: Inflammatory activation induced by SARS-CoV-2 is an important stimulator of COVID-19 related immunopathology. Targeting the NLRP3 inflammasome is a promising immune intervention against severe COVID-19 disease. FUNDING: This work was supported by grants from the Bureau of Frontier Sciences and Education, CAS (grant no. QYZDJ-SSW-SMC005 to Y.G.Y.), the key project of the CAS "Light of West China" Program (to D.Y.) and Yunnan Province (202001AS070023 to D.Y.).


Assuntos
COVID-19 , Pulmão , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , COVID-19/genética , COVID-19/imunologia , COVID-19/patologia , Modelos Animais de Doenças , Humanos , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macrófagos/imunologia , Macrófagos/patologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , SARS-CoV-2/genética , Células THP-1
17.
Cells ; 11(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35011708

RESUMO

Extracellular vesicles (EVs) and viruses share common features: size, structure, biogenesis and uptake. In order to generate EVs expressing the SARS-CoV-2 spike protein on their surface (S-EVs), we collected EVs from SARS-CoV-2 spike expressing human embryonic kidney (HEK-293T) cells by stable transfection with a vector coding for the S1 and S2 subunits. S-EVs were characterized using nanoparticle tracking analysis, ExoView and super-resolution microscopy. We obtained a population of EVs of 50 to 200 nm in size. Spike expressing EVs represented around 40% of the total EV population and co-expressed spike protein with tetraspanins on the surfaces of EVs. We subsequently used ACE2-positive endothelial and bronchial epithelial cells for assessing the internalization of labeled S-EVs using a cytofluorimetric analysis. Internalization of S-EVs was higher than that of control EVs from non-transfected cells. Moreover, S-EV uptake was significantly decreased by anti-ACE2 antibody pre-treatment. Furthermore, colchicine, a drug currently used in clinical trials, significantly reduced S-EV entry into the cells. S-EVs represent a simple, safe, and scalable model to study host-virus interactions and the mechanisms of novel therapeutic drugs.


Assuntos
COVID-19/metabolismo , Vesículas Extracelulares/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Bloqueadores/farmacologia , COVID-19/virologia , Linhagem Celular , Células Cultivadas , Colchicina/farmacologia , Citometria de Fluxo/métodos , Células HEK293 , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Microscopia de Fluorescência/métodos , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/fisiologia
18.
Signal Transduct Target Ther ; 7(1): 23, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078968
19.
Nat Commun ; 13(1): 405, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058437

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of the coronavirus induced disease 2019 (COVID-19) with evolving variants of concern. It remains urgent to identify novel approaches against broad strains of SARS-CoV-2, which infect host cells via the entry receptor angiotensin-converting enzyme 2 (ACE2). Herein, we report an increase in circulating extracellular vesicles (EVs) that express ACE2 (evACE2) in plasma of COVID-19 patients, which levels are associated with severe pathogenesis. Importantly, evACE2 isolated from human plasma or cells neutralizes SARS-CoV-2 infection by competing with cellular ACE2. Compared to vesicle-free recombinant human ACE2 (rhACE2), evACE2 shows a 135-fold higher potency in blocking the binding of the viral spike protein RBD, and a 60- to 80-fold higher efficacy in preventing infections by both pseudotyped and authentic SARS-CoV-2. Consistently, evACE2 protects the hACE2 transgenic mice from SARS-CoV-2-induced lung injury and mortality. Furthermore, evACE2 inhibits the infection of SARS-CoV-2 variants (α, ß, and δ) with equal or higher potency than for the wildtype strain, supporting a broad-spectrum antiviral mechanism of evACE2 for therapeutic development to block the infection of existing and future coronaviruses that use the ACE2 receptor.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Vesículas Extracelulares/imunologia , SARS-CoV-2/imunologia , Células A549 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/sangue , COVID-19/epidemiologia , Chlorocebus aethiops , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos Transgênicos , Testes de Neutralização/métodos , Pandemias/prevenção & controle , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Análise de Sobrevida , Células Vero
20.
PLoS One ; 17(1): e0262657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35041700

RESUMO

BACKGROUND: Tests for SARS-CoV-2 immunity are needed to help assess responses to vaccination, which can be heterogeneous and may wane over time. The plaque reduction neutralization test (PRNT) is considered the gold standard for measuring serum neutralizing antibodies but requires high level biosafety, live viral cultures and days to complete. We hypothesized that competitive enzyme linked immunoassays (ELISAs) based on SARS-CoV-2 spike protein's receptor binding domain (RBD) attachment to its host receptor, the angiotensin converting enzyme 2 receptor (ACE2r), would correlate with PRNT, given the central role of RBD-ACE2r interactions in infection and published studies to date, and enable evaluation of vaccine responses. METHODS AND RESULTS: Configuration and development of a competitive ELISA with plate-bound RBD and soluble biotinylated ACE2r was accomplished using pairs of pre/post vaccine serum. When the competitive ELISA was used to evaluate N = 32 samples from COVID-19 patients previously tested by PRNT, excellent correlation in IC50 results were observed (rs = .83, p < 0.0001). When the competitive ELISA was used to evaluate N = 42 vaccinated individuals and an additional N = 13 unvaccinated recovered COVID-19 patients, significant differences in RBD-ACE2r inhibitory activity were associated with prior history of COVID-19 and type of vaccine received. In longitudinal analyses pre and up to 200 days post vaccine, surrogate neutralizing activity increased markedly after primary and booster vaccine doses, but fell substantially, up to <12% maximal levels within 6 months. CONCLUSIONS: A competitive ELISA based on inhibition of RBD-ACE2r attachment correlates well with PRNT, quantifies significantly higher activity among vaccine recipients with prior COVID (vs. those without), and highlights marked declines in surrogate neutralizing activity over a 6 month period post vaccination. The findings raise concern about the duration of vaccine responses and potential need for booster shots.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Vacinas Sintéticas/administração & dosagem , Vacinas de mRNA/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...